Metabolic Network Analysis-Based Identification of Antimicrobial Drug Targets in Category A Bioterrorism Agents

Yong-Yeol Ahn, Deok-Sun Lee, Henry Burd, William Blank, Vinayak Kapatral 

The 2001 anthrax mail attacks in the United States demonstrated the potential threat of bioterrorism, hence driving the need to develop sophisticated treatment and diagnostic protocols to counter biological warfare. Here, by performing flux balance analyses on the fully-annotated metabolic networks of multiple, whole genome-sequenced bacterial strains, we have identified a large number of metabolic enzymes as potential drug targets for each of the three Category A-designated bioterrorism agents including Bacillus anthracis, Francisella tularensis and Yersinia pestis. Nine metabolic enzymes- belonging to the coenzyme A, folate, phosphatidyl-ethanolamine and nucleic acid pathways common to all strains across the three distinct genera were identified as targets. Antimicrobial agents against some of these enzymes are available. Thus, a combination of cross species-specific antibiotics and common antimicrobials against shared targets may represent a useful combinatorial therapeutic approach against all Category A bioterrorism agents.

Published: January 15, 2014DOI: 10.1371/journal.pone.0085195

Comparative Genome-Scale Metabolic Reconstruction and Flux Balance Analysis of Multiple Staphylococcus aureus Genomes Identify Novel Antimicrobial Drug Targets

Deok-Sun Lee, Henry Burd, Jiangxia Liu, Eivind Almaas, Olaf Wiest, Albert-László Barabási, Zoltán N. Oltvai, and  Vinayak Kapatral

Mortality due to multidrug-resistant Staphylococcus aureus infection is predicted to surpass that of human immunodeficiency virus/AIDS in the United States. Despite the various treatment options for S. aureusinfections, it remains a major hospital- and community-acquired opportunistic pathogen. With the emergence of multidrug-resistant S. aureus strains, there is an urgent need for the discovery of new antimicrobial drug targets in the organism. To this end, we reconstructed the metabolic networks of multidrug-resistant S. aureus strains using genome annotation, functional-pathway analysis, and comparative genomic approaches, followed by flux balance analysis-based in silico single and double gene deletion experiments. We identified 70 single enzymes and 54 pairs of enzymes whose corresponding metabolic reactions are predicted to be unconditionally essential for growth. Of these, 44 single enzymes and 10 enzyme pairs proved to be common to all 13 S. aureus strains, including many that had not been previously identified as being essential for growth by gene deletion experiments in S. aureus. We thus conclude that metabolic reconstruction and in silico analyses of multiple strains of the same bacterial species provide a novel approach for potential antibiotic target identification.

J Bacteriol. 2009 Jun; 191(12): 4015–4024.
Published online 2009 Apr 17. doi:  10.1128/JB.01743-08

The genome of Syntrophus aciditrophicus: Life at the thermodynamic limit of microbial growth

Michael J. McInerney, Lars Rohlin, Housna Mouttaki, UnMi Kim, Rebecca S. Krupp, Luis Rios-Hernandez, Jessica Sieber, Christopher G. Struchtemeyer, Anamitra Bhattacharyya, John W. Campbell, and Robert P. Gunsalus

Biochemically, the syntrophic bacteria constitute the missing link in our understanding of anaerobic flow of carbon in the biosphere. The completed genome sequence of Syntrophus aciditrophicus SB, a model fatty acid- and aromatic acid-degrading syntrophic bacterium, provides a glimpse of the composition and architecture of the electron transfer and energy-transducing systems needed to exist on marginal energy economies of a syntrophic lifestyle. The genome contains 3,179,300 base pairs and 3,169 genes where 1,618 genes were assigned putative functions. Metabolic reconstruction of the gene inventory revealed that most biosynthetic pathways of a typical Gram-negative microbe were present. A distinctive feature of syntrophic metabolism is the need for reverse electron transport; the presence of a unique Rnf-type ion-translocating electron transfer complex, menaquinone, and membrane-bound Fe-S proteins with associated heterodisulfide reductase domains suggests mechanisms to accomplish this task. Previously undescribed approaches to degrade fatty and aromatic acids, including multiple AMP-forming CoA ligases and acyl-CoA synthetases seem to be present as ways to form and dissipate ion gradients by using a sodium-based energy strategy. Thus, S. aciditrophicus, although nutritionally self-sufficient, seems to be a syntrophic specialist with limited fermentative and respiratory metabolism. Genomic analysis confirms the S. aciditrophicus metabolic and regulatory commitment to a nonconventional mode of life compared with our prevailing understanding of microbiology.

Published online 2007 Apr 18. doi:  10.1073/pnas.0610456104

Genome data mining of lactic acid bacteria: the impact of bioinformatics.

Siezen RJ, van Enckevort FH, Kleerebezem M, Teusink B.

Lactic acid bacteria (LAB) have been widely used in food fermentations and, more
recently, as probiotics in health-promoting food products. Genome sequencing and
functional genomics studies of a variety of LAB are now rapidly providing
insights into their diversity and evolution and revealing the molecular basis for
important traits such as flavor formation, sugar metabolism, stress response,
adaptation and interactions. Bioinformatics plays a key role in handling,
integrating and analyzing the flood of 'omics' data being generated.
Reconstruction of metabolic potential using bioinformatics tools and databases,
followed by targeted experimental verification and exploration of the metabolic
and regulatory network properties, are the present challenges that should lead to
improved exploitation of these versatile food bacteria.

Curr Opin Biotechnol. 2004 Apr;15(2):105-15.