Genomic Comparisons of Endophytic Periconia from North American and European Grasslands

Keerthi Mandyam, Alcorn State University Co-Author(s): Anna Kazarina and Ananda Nanjundaswamy, Dept of Agriculture, Alcorn State University; Benjamin Vaisvil, Daniel Schmitt, and Vinayak Kapatral, Igenbio Inc

Plants are associated with a suite of microbial symbioses, with roots offering a unique niche for fungal endophytes. Among root fungal symbionts, dark septate endophytic (DSE) fungi are common, sometimes abundant but enigmatic with poor clarity on their functional roles. Biogeographical distinctions likely exist in DSE communities from forests and grasslands, with North American and European grasslands predominantly represented by Periconia macrospinosa. To understand their endophyc roles, the genome of dark septate P. macrospinosa and Cadophora isolated from Festuca vaginata from semi-arid European grassland were sequenced. To further comprehend DSE funconal roles, the objecve of this study was to compare the North American P. macrospinosa genome with that of the European P. macrospinosa. Periconia was isolated from a stand of Freedom Giant Miscanthus culvated in Lorman, MS and was confirmed to be a DSE. We hypothesized that despite the geographical disncons and diverse grass hosts, P. macrospinosa associated with grasses would have similar funconal roles. Periconia genome was sequenced using Illumina and PacBio plaorms. Our Periconia genome was determined to be ~ 53.5 MB in size with 45% GC content. At least 12,059 ORFs with 9,086 ORFs with introns were idenfied and nearly 35% of the ORFs were assigned funcons. As expected, several plant cell wall degrading enzymes (PCWDEs) like cellulases (12 ORFs), amylases (2 ORFs), pecn esterase (1 ORF), tannase (2 ORFs), laccase (6 ORFs) were idenfied along with several sugar transport systems such as maltose, lactate, sucrose, maltose, xylose isomaltose, palanose, etc. However, ORFs for lignin peroxidase, manganese peroxidase, glyoxal oxidase were not observed. As hypothesized, the Periconia genomes were comparable. Periconia macrospinosa genomics data will be discussed to draw big picture inferences regarding DSE symbiosis.